Sarah Hennessy, PhD

Hennessy.sarah907@gmail.com, LinkedIn, Personal Website, Google Scholar Profile, (907) 792-9183

SUMMARY

Cognitive Neuroscience PhD researcher specializing in music cognition with over 10 years of experience in behavioral science and data analysis. Expert in quantitative methods, including experimental design, statistical analysis, A/B testing, and causal inference that transform complex data into actionable product insights. Proven experience analyzing music listener behavior and evaluating AI-based music interventions at scale to optimize user engagement and product strategy.

SKILLS

Methods: Causal inference, randomized-control trials, experimental design, model performance metrics, quantitative and qualitative research methods, longitudinal analysis, surveys, usability testing, A/B testing, user segmentation, LLM evaluation, hierarchical linear modeling, non-parametric and robust statistics, dimensionality reduction, classification

Programming Languages and Tools: R, Python, Matlab, SQL, Docker, DBeaver, Tableau, AWS, QuickSight, Qualtrics **Communication**: Executive reporting, cross-functional collaboration, investor interviews, publication writing

EXPERIENCE

Postdoctoral Research Scientist

University of Arizona, Department of Psychology

September 2024 – Present

- Led end-to-end research projects on human behavior, emotion, and memory, applying advanced statistical methods
- Utilized and evaluated large language models for their efficacy in categorizing user-generated text based on standard psychological assessments, collaborating cross-functionally with engineers, linguists, and social scientists.
- Created experimental protocols, survey instruments, and interactive dashboards to share insights with collaborators
- Secured \$25,000 in competitive funding to test user responses to emotionally personalized content

Data and Research Scientist

Rubato Life (Music health technology startup)

April 2022 - September 2023

- Designed and analyzed trials (1m + datapoints) to assess impact of AI-based personalized music interventions, directly informing product optimization, market goals, and investor presentations
- Delivered weekly performance analyses to leadership team, identifying model limitations and recommending optimizations for Al-driven personalized music interventions
- A/B tested mobile UX prototypes, optimizing in-app data visualizations based on user engagement metrics
- Built scalable data visualizations of key metrics using Tableau and QuickSight for investor reporting

Music Cognition Researcher

University of Southern California, Brain and Creativity Institute

September 2019 – August 2024

- Conducted 10+ studies on human behavior and experience with music, media, and health tools, including 3 randomizedcontrol trials and 3 longitudinal studies
- Developed personalized music-recommendation app using Spotify API for experimental research (*Soundslikethis.us*), collaborating with music therapists and engineers
- Applied surveys, interviews, neuroimaging, and psychophysiological monitoring to assess user experience
- Analyzed user-generated data with R and Python for causal relationships to inform publications
- Managed \$200k+ in research funding and a team of 80 mentees

Research Manager

USC Brain and Creativity Institute, Brain and Music Project

April 2017 – September 2019

- Supervised music cognition research with children and families, combining observational, survey, and longitudinal data
- Presented research findings to community stakeholders, helping shape public engagement strategy

EDUCATION

University of Southern California | Ph.D., M.A., Brain and Cognitive Sciences

Occidental College | B.A., Psychology (Honors); Minor: Ethnomusicology (Magna Cum Laude)

SELECTED PUBLICATION HIGHLIGHTS

Hennessy, S., et al., (2025). Music-evoked nostalgia activates default mode and reward networks across the lifespan. *Human Brain Mapping*. Klus, J., Hennessy, S., et al., (2025). Modeling Memories, Predicting Prospections: Automated Scoring of Autobiographical Detail Narration using Large Language Models. *Behavior Research Methods*.

Hennessy, S., et al., (2024). Unique affective profile of music-evoked nostalgia: An extension and conceptual replication of Barrett et al., 2010. *Emotion*.

Hennessy, S., et al., (2022). Speech-in-noise perception in musicians and non-musicians: a multi-level meta-analysis. Hearing Research.

Hennessy, S., et al., (2021). Music and mood regulation during the early-stages of the COVID-19 pandemic. PLOS One.